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What is DeepWave?

The DEEP propagating gravity WAVE (DEEPWAVE) initiative is a
comprehensive, airborne and ground-based measurement and modeling

program centered on New Zealand and focused on providing a new
understanding of GW dynamics and impacts from the troposphere through
the mesosphere and lower thermosphere (MLT).
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What is DeepWave?

* GWSs account for main vertical energy & momentum transport at all levels
* The important GWs are not resolved by satellite measurements or GCMs
* GCM parameterizations of GWs are known to be seriously deficient

Better GW parameterizations require improved understanding of complex
GW dynamics via coordinated measurements and modeling
- Lead to improved predictions of weather & climate
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What is DeepWave?

* GWs account for main vertical energy & momentum transport at all levels
* The important GWs are not resolved by satellite measurements or GCMs
« GCM parameterizations of GWs are known to be seriously deficient

Better GW parameterizations require improved understanding of complex
GW dynamics via coordinated measurements and modeling
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What is DeepWave?

* GWs account for main vertical energy & momentum transport at all levels
* The important GWs are not resolved by satellite measurements or GCMs
« GCM parameterizations of GWs are known to be seriously deficient

Better GW parameterizations require improved understanding of complex
GW dynamics via coordinated measurements and modeling

- Lead to improved predictions of weather & climate
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Deep GW Propagation over New Zealand

What Factors Enable GWs to Achieve Large Amplitudes in the
Southern Hemisphere Stratosphere and Above (MLT)?

Zonal winds differ from Northern Frequency of 700 hPa U>10 m s

Hemisphere to S. Hemisphere Invercargill, New Zealand
ERA Reanalysis (July 1991-2011)
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Why the New Zealand & Southern Oceans?

Rich Prevalent Large-Amplitude GW Structures

Examples from AIRS Radiances

Mountain Waves Non-Orographic GWs Multiple Sources?
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Interrelatlng GWs Resolved by Satelllte
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DeepWave Instrumentation

NSF/NCAR GV Instrument Suite

In situ instruments
(gust probe, GPS..)

Dropsondes

Microwave
Temperature Profiler
(MTP)

Rayleigh lidar

Sodium (Na)
resonance lidar

Mesospheric
Temperature Mapper
(MTM)

Winds, temperature, O5, aerosol, humidity
* 1-5 Hz (Ax~50-250 m)

Wind & temperature profiles
e Az~100 m

Temperature profiles
» £1-2 K, Az~0.7-3 km, 10-15 s integration
(Ax~2-4 km)

Temperature profiles

o £2-8 K, Az~2 km, 20s integration (Ax~5 km)
aerosol (PSC) backscatter

* Az~0.5-1 km

Na densities, temperature

» £1-3 K, Az~3-5 km, 20s int. (Ax~5 km)
vertical wind

e £1-3 m/s, Az~3-5 km, 20 s int. (Ax~5 km)

All sky OH airglow and temperature
» +2 K, 5s integration (Ax~1 km)

Existing Facility Instruments

Flight level
(5-13 km)

Below aircraft
(0-13 km)

~5-20 km

T~30-50 km
PSC ~20-30 km

~15-30 km
~84-96 km

~87 km

Along-track hires GW &
turbulence data

Flow environment, GW
structure below flight

GW structure above &
below NGV

GW structure
GW-induced PSCs

GW structure

Two-dimensional GW
structure, propagation
directions

New Facility Instruments being
developed for DeepWave
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DeepWave Instrumentation
NSF/NCAR GV Instrument Suite
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DeepWave Instrumentation

NSF/NCAR GV Instrument Test Flight (22-23 Feb 2013)
OH Intensity- Mesospheric Temperature Mapper (MTM) (Mike Taylor)




DeepWave Field Campaign
5June — 21 July 2014

New NCAR-GV Up-looking Field Campaign in June-July 2014
Gravity Wave Instruments jéloew Zealap,gl
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Predictability of Deep Propagating GWs
What are the predictability characteristics of deep propagating GWs?

Adjoint allows for the mathematically rigorous calculation of forecast

sensitivity of aresponse function to changes in the initial state
AIRS 2 hPa (13 July 2011)
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« Adjoint is used to diagnose sensitivity using a
Kinetic energy response function (1 km above mtn.)

e Sensitivity ~1200 km upstream near trough.

* Moisture & temp. are most sensitive variables.

* Adjoint optimal perturbations lead to strong wave
propagation (refracted waves south of NZ)




Gravity Waves In Sheared Flow

Idealized Shear Experiments

w (m s1) at 25 km u-momentum
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* Role of horizontal shear often is not considered in GW studies.
eldealized simulations of gravity waves in balanced shear (Ax=15 km)

*Flow over Gaussian hill (north of jet) leads to vertically propagating
waves that are refracted by the horlzontal shear in the stratosphere.

« Zonal momentum flux in the stratosphere shows refraction due to

shear.




3600 km

Gravity Waves In Sheared Flow

ldealized Shear Experiments
Vertical Velocity Vertical Velocity (65 m st Jet)
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*Stronger shear leads to greater wave refraction and further propagation
of the wave energy into the jet and downstream.

* Marked asymmetries are apparent in the waves due to the refraction

Into the jet and absorption at directional critical lines.
*None of these effects are included in wave drag parameterizations.




DeepWave Dry Run Exercise

New Zealand Flight Tasmania Flight S. Ocean Flight
8 August 2013 10 August 2013 15 August 2013
topographic elevation prigilhr CMWEF Divergence
BhPa) ~T, A
o NSRS
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Valid: Sat, 10 Aug 2013, 12 UTC (step 060 h from Thu, 08 Aug 2013, 00 UTC)

*Dry run exercise conducted from 5-15 August 2013.
5 “dry run flights” were proposed over NZ, Tasmania, and S. Ocean.
*Dry run was very useful to refine our observational strategy and procedures.



Gravity Wave Sources
AIRS Radiance = ERAdivergence (10°s ') ERA Eady growth rate (day™")
(2003-2011) 5 hPa (July 1999 -2009) 525 hPa (July 1999-2009

(b) BMS AIRS Radiance: 20 hPa
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Hendricks et al. 2014 (JAS
«Eady growth rate and divergence (ECMWF reanalysis) correlation points to

possible spontaneous GW emission sources from jets and baroclinic waves.
*\What are the dominant sources that contribute to stratospheric GW activity?




Summary and Future Directions

 DeepWave will study, model, & parameterize GWSs by observing and
characterizing them over their entire life cycle (0-100 km) in a very active
planetary “hot spot” (New Zealand, Tasmania, S. Ocean) [5 Jun—-21 Jul '14]

—GWe-resolving obs: NCAR GV, DLR Falcon, satellite, ISS, surface-based
—Extensive forecast and post-analysis modeling & predictability component

« Horizontal shear fundamentally modifies stratospheric GW characteristics
—Strong shear leads to GW ‘refraction’ and non-local GWD.

» Stratospheric GWs from multiple sources

—Terrain-forcing and spontaneous GW
emission from baroclinic waves & jets

 Predictability of stratospheric and MLT
GWs is linked with tropospheric cyclones

—Moisture and temperature perturbations
lead to most rapid growth
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